glamer – I. A code for gravitational lensing simulations with adaptive mesh refinement
نویسندگان
چکیده
منابع مشابه
N-Body Code with Adaptive Mesh Refinement
We have developed a simulation code with the techniques which enhance both spatial and time resolution of the PM method for which the spatial resolution is restricted by the spacing of structured mesh. The adaptive mesh refinement (AMR) technique subdivides the cells which satisfy the refinement criterion recursively. The hierarchical meshes are maintained by the special data structure and are ...
متن کاملAdaptive Mesh Refinement MHD for Global Simulations
Techniques that have become common in aerodynamics codes have recently begun to be implemented in space-physic codes, which solve the governing equations for a compressible plasma. These techniques include high-resolution upwind schemes, block-based solution-adaptive grids and domain decomposition for parallelization. While some of these techniques carry over relatively straightforwardly from a...
متن کاملSelf-gravitational Magnetohydrodynamics with Adaptive Mesh Refinement for Protostellar Collapse
A new numerical code, called SFUMATO, for solving self-gravitational magnetohydrodynamics (MHD) problems using adaptive mesh refinement (AMR) is presented. A block-structured grid is adopted as the grid of the AMR hierarchy. The total variation diminishing (TVD) cell-centered scheme is adopted as the MHD solver, with hyperbolic cleaning of divergence error of the magnetic field also implemented...
متن کاملGAMER: a GPU-Accelerated Adaptive Mesh Refinement Code for Astrophysics
We present the newly developed code, GAMER (GPU-accelerated Adaptive MEsh Refinement code), which has adopted a novel approach to improve the performance of adaptive mesh refinement (AMR) astrophysical simulations by a large factor with the use of the graphic processing unit (GPU). The AMR implementation is based on a hierarchy of grid patches with an oct-tree data structure. We adopt a three-d...
متن کاملParallel Tsunami Simulations With Block - Structured Adaptive Mesh Refinement
Due to the catastrophic effects of tsunamis, tsunami simulations are desired to increase the understanding of the phenomena, as well as to serve as mitigation and early warning systems for the affected areas. Even with the advent of supercomputers, the latter one is far out of reach due to the contradicting need for accuracy and speed. A common solution to this problem are adaptively refined gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Notices of the Royal Astronomical Society
سال: 2014
ISSN: 1365-2966,0035-8711
DOI: 10.1093/mnras/stu1859